Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 79 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Higher-dimensional models of networks (0909.4314v1)

Published 23 Sep 2009 in cs.NI and cs.DM

Abstract: Networks are often studied as graphs, where the vertices stand for entities in the world and the edges stand for connections between them. While relatively easy to study, graphs are often inadequate for modeling real-world situations, especially those that include contexts of more than two entities. For these situations, one typically uses hypergraphs or simplicial complexes. In this paper, we provide a precise framework in which graphs, hypergraphs, simplicial complexes, and many other categories, all of which model higher graphs, can be studied side-by-side. We show how to transform a hypergraph into its nearest simplicial analogue, for example. Our framework includes many new categories as well, such as one that models broadcasting networks. We give several examples and applications of these ideas.

Citations (16)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.