Papers
Topics
Authors
Recent
2000 character limit reached

Acyclic Edge coloring of Planar Graphs

Published 16 Aug 2009 in cs.DM | (0908.2237v1)

Abstract: An $acyclic$ edge coloring of a graph is a proper edge coloring such that there are no bichromatic cycles. The \emph{acyclic chromatic index} of a graph is the minimum number k such that there is an acyclic edge coloring using k colors and is denoted by $a'(G)$. It was conjectured by Alon, Sudakov and Zaks (and much earlier by Fiamcik) that $a'(G)\le \Delta+2$, where $\Delta =\Delta(G)$ denotes the maximum degree of the graph. We prove that if $G$ is a planar graph with maximum degree $\Delta$, then $a'(G)\le \Delta + 12$.

Citations (53)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.