Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
131 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Clustering for Improved Learning in Maze Traversal Problem (0908.0939v1)

Published 6 Aug 2009 in cs.LG

Abstract: The maze traversal problem (finding the shortest distance to the goal from any position in a maze) has been an interesting challenge in computational intelligence. Recent work has shown that the cellular simultaneous recurrent neural network (CSRN) can solve this problem for simple mazes. This thesis focuses on exploiting relevant information about the maze to improve learning and decrease the training time for the CSRN to solve mazes. Appropriate variables are identified to create useful clusters using relevant information. The CSRN was next modified to allow for an additional external input. With this additional input, several methods were tested and results show that clustering the mazes improves the overall learning of the traversal problem for the CSRN.

Citations (2)

Summary

We haven't generated a summary for this paper yet.