Online Sorting via Searching and Selection (0907.1295v1)
Abstract: In this paper, we present a framework based on a simple data structure and parameterized algorithms for the problems of finding items in an unsorted list of linearly ordered items based on their rank (selection) or value (search). As a side-effect of answering these online selection and search queries, we progressively sort the list. Our algorithms are based on Hoare's Quickselect, and are parameterized based on the pivot selection method. For example, if we choose the pivot as the last item in a subinterval, our framework yields algorithms that will answer q<=n unique selection and/or search queries in a total of O(n log q) average time. After q=\Omega(n) queries the list is sorted. Each repeated selection query takes constant time, and each repeated search query takes O(log n) time. The two query types can be interleaved freely. By plugging different pivot selection methods into our framework, these results can, for example, become randomized expected time or deterministic worst-case time. Our methods are easy to implement, and we show they perform well in practice.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.