Papers
Topics
Authors
Recent
Search
2000 character limit reached

Evidence of coevolution in multi-objective evolutionary algorithms

Published 2 Jul 2009 in cs.NE and cs.AI | (0907.0329v1)

Abstract: This paper demonstrates that simple yet important characteristics of coevolution can occur in evolutionary algorithms when only a few conditions are met. We find that interaction-based fitness measurements such as fitness (linear) ranking allow for a form of coevolutionary dynamics that is observed when 1) changes are made in what solutions are able to interact during the ranking process and 2) evolution takes place in a multi-objective environment. This research contributes to the study of simulated evolution in a at least two ways. First, it establishes a broader relationship between coevolution and multi-objective optimization than has been previously considered in the literature. Second, it demonstrates that the preconditions for coevolutionary behavior are weaker than previously thought. In particular, our model indicates that direct cooperation or competition between species is not required for coevolution to take place. Moreover, our experiments provide evidence that environmental perturbations can drive coevolutionary processes; a conclusion that mirrors arguments put forth in dual phase evolution theory. In the discussion, we briefly consider how our results may shed light onto this and other recent theories of evolution.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.