Multi-Label MRF Optimization via Least Squares s-t Cuts (0907.0204v1)
Abstract: There are many applications of graph cuts in computer vision, e.g. segmentation. We present a novel method to reformulate the NP-hard, k-way graph partitioning problem as an approximate minimal s-t graph cut problem, for which a globally optimal solution is found in polynomial time. Each non-terminal vertex in the original graph is replaced by a set of ceil(log_2(k)) new vertices. The original graph edges are replaced by new edges connecting the new vertices to each other and to only two, source s and sink t, terminal nodes. The weights of the new edges are obtained using a novel least squares solution approximating the constraints of the initial k-way setup. The minimal s-t cut labels each new vertex with a binary (s vs t) "Gray" encoding, which is then decoded into a decimal label number that assigns each of the original vertices to one of k classes. We analyze the properties of the approximation and present quantitative as well as qualitative segmentation results.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.