Papers
Topics
Authors
Recent
2000 character limit reached

The Complexity of Datalog on Linear Orders

Published 8 Feb 2009 in cs.LO, cs.CC, and cs.DB | (0902.1179v2)

Abstract: We study the program complexity of datalog on both finite and infinite linear orders. Our main result states that on all linear orders with at least two elements, the nonemptiness problem for datalog is EXPTIME-complete. While containment of the nonemptiness problem in EXPTIME is known for finite linear orders and actually for arbitrary finite structures, it is not obvious for infinite linear orders. It sharply contrasts the situation on other infinite structures; for example, the datalog nonemptiness problem on an infinite successor structure is undecidable. We extend our upper bound results to infinite linear orders with constants. As an application, we show that the datalog nonemptiness problem on Allen's interval algebra is EXPTIME-complete.

Citations (3)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.