Papers
Topics
Authors
Recent
2000 character limit reached

Comparison of Binary Classification Based on Signed Distance Functions with Support Vector Machines

Published 16 Dec 2008 in cs.LG and cs.CG | (0812.3147v1)

Abstract: We investigate the performance of a simple signed distance function (SDF) based method by direct comparison with standard SVM packages, as well as K-nearest neighbor and RBFN methods. We present experimental results comparing the SDF approach with other classifiers on both synthetic geometric problems and five benchmark clinical microarray data sets. On both geometric problems and microarray data sets, the non-optimized SDF based classifiers perform just as well or slightly better than well-developed, standard SVM methods. These results demonstrate the potential accuracy of SDF-based methods on some types of problems.

Citations (10)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.