The Relationship between Tsallis Statistics, the Fourier Transform, and Nonlinear Coupling
Abstract: Tsallis statistics (or q-statistics) in nonextensive statistical mechanics is a one-parameter description of correlated states. In this paper we use a translated entropic index: $1 - q \to q$ . The essence of this translation is to improve the mathematical symmetry of the q-algebra and make q directly proportional to the nonlinear coupling. A conjugate transformation is defined $\hat q \equiv \frac{{- 2q}}{{2 + q}}$ which provides a dual mapping between the heavy-tail q-Gaussian distributions, whose translated q parameter is between $ - 2 < q < 0$, and the compact-support q-Gaussians, between $0 < q < \infty $ . This conjugate transformation is used to extend the definition of the q-Fourier transform to the domain of compact support. A conjugate q-Fourier transform is proposed which transforms a q-Gaussian into a conjugate $\hat q$ -Gaussian, which has the same exponential decay as the Fourier transform of a power-law function. The nonlinear statistical coupling is defined such that the conjugate pair of q-Gaussians have equal strength but either couple (compact-support) or decouple (heavy-tail) the statistical states. Many of the nonextensive entropy applications can be shown to have physical parameters proportional to the nonlinear statistical coupling.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.