Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Monotonic Convergence in an Information-Theoretic Law of Small Numbers (0810.5203v4)

Published 29 Oct 2008 in cs.IT, math.IT, and math.PR

Abstract: An "entropy increasing to the maximum" result analogous to the entropic central limit theorem (Barron 1986; Artstein et al. 2004) is obtained in the discrete setting. This involves the thinning operation and a Poisson limit. Monotonic convergence in relative entropy is established for general discrete distributions, while monotonic increase of Shannon entropy is proved for the special class of ultra-log-concave distributions. Overall we extend the parallel between the information-theoretic central limit theorem and law of small numbers explored by Kontoyiannis et al. (2005) and Harremo\"es et al.\ (2007, 2008). Ingredients in the proofs include convexity, majorization, and stochastic orders.

Citations (30)

Summary

We haven't generated a summary for this paper yet.