Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Thinning, Entropy and the Law of Thin Numbers (0906.0690v1)

Published 3 Jun 2009 in cs.IT, math.IT, and math.PR

Abstract: Renyi's "thinning" operation on a discrete random variable is a natural discrete analog of the scaling operation for continuous random variables. The properties of thinning are investigated in an information-theoretic context, especially in connection with information-theoretic inequalities related to Poisson approximation results. The classical Binomial-to-Poisson convergence (sometimes referred to as the "law of small numbers" is seen to be a special case of a thinning limit theorem for convolutions of discrete distributions. A rate of convergence is provided for this limit, and nonasymptotic bounds are also established. This development parallels, in part, the development of Gaussian inequalities leading to the information-theoretic version of the central limit theorem. In particular, a "thinning Markov chain" is introduced, and it is shown to play a role analogous to that of the Ornstein-Uhlenbeck process in connection to the entropy power inequality.

Citations (41)

Summary

We haven't generated a summary for this paper yet.