Papers
Topics
Authors
Recent
Search
2000 character limit reached

Distributing Labels on Infinite Trees

Published 11 Sep 2008 in cs.DM | (0809.1989v1)

Abstract: Sturmian words are infinite binary words with many equivalent definitions: They have a minimal factor complexity among all aperiodic sequences; they are balanced sequences (the labels 0 and 1 are as evenly distributed as possible) and they can be constructed using a mechanical definition. All this properties make them good candidates for being extremal points in scheduling problems over two processors. In this paper, we consider the problem of generalizing Sturmian words to trees. The problem is to evenly distribute labels 0 and 1 over infinite trees. We show that (strongly) balanced trees exist and can also be constructed using a mechanical process as long as the tree is irrational. Such trees also have a minimal factor complexity. Therefore they bring the hope that extremal scheduling properties of Sturmian words can be extended to such trees, as least partially. Such possible extensions are illustrated by one such example.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.