Papers
Topics
Authors
Recent
Search
2000 character limit reached

On Unique Decodability

Published 5 Sep 2008 in cs.IT and math.IT | (0809.1043v1)

Abstract: In this paper we propose a revisitation of the topic of unique decodability and of some fundamental theorems of lossless coding. It is widely believed that, for any discrete source X, every "uniquely decodable" block code satisfies E[l(X_1 X_2 ... X_n)]>= H(X_1,X_2,...,X_n), where X_1, X_2,...,X_n are the first n symbols of the source, E[l(X_1 X_2 ... X_n)] is the expected length of the code for those symbols and H(X_1,X_2,...,X_n) is their joint entropy. We show that, for certain sources with memory, the above inequality only holds when a limiting definition of "uniquely decodable code" is considered. In particular, the above inequality is usually assumed to hold for any "practical code" due to a debatable application of McMillan's theorem to sources with memory. We thus propose a clarification of the topic, also providing an extended version of McMillan's theorem to be used for Markovian sources.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.