Papers
Topics
Authors
Recent
2000 character limit reached

Foundations of the Pareto Iterated Local Search Metaheuristic

Published 2 Sep 2008 in cs.AI | (0809.0406v1)

Abstract: The paper describes the proposition and application of a local search metaheuristic for multi-objective optimization problems. It is based on two main principles of heuristic search, intensification through variable neighborhoods, and diversification through perturbations and successive iterations in favorable regions of the search space. The concept is successfully tested on permutation flow shop scheduling problems under multiple objectives. While the obtained results are encouraging in terms of their quality, another positive attribute of the approach is its' simplicity as it does require the setting of only very few parameters. The implementation of the Pareto Iterated Local Search metaheuristic is based on the MOOPPS computer system of local search heuristics for multi-objective scheduling which has been awarded the European Academic Software Award 2002 in Ronneby, Sweden (http://www.easa-award.net/, http://www.bth.se/llab/easa_2002.nsf)

Citations (9)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.