Papers
Topics
Authors
Recent
Search
2000 character limit reached

On the noncommutative Donaldson-Thomas invariants arising from brane tilings

Published 1 Sep 2008 in math.AG and math.RT | (0809.0117v2)

Abstract: Given a brane tiling, that is a bipartite graph on a torus, we can associate with it a quiver potential and a quiver potential algebra. Under certain consistency conditions on a brane tiling, we prove a formula for the Donaldson-Thomas type invariants of the moduli space of framed cyclic modules over the corresponding quiver potential algebra. We relate this formula with the counting of perfect matchings of the periodic plane tiling corresponding to the brane tiling. We prove that the same consistency conditions imply that the quiver potential algebra is a 3-Calabi-Yau algebra. We also formulate a rationality conjecture for the generating functions of the Donaldson-Thomas type invariants.

Citations (130)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.