Detection Strategies for Extreme Mass Ratio Inspirals (0804.3323v3)
Abstract: The capture of compact stellar remnants by galactic black holes provides a unique laboratory for exploring the near horizon geometry of the Kerr spacetime, or possible departures from general relativity if the central cores prove not to be black holes. The gravitational radiation produced by these Extreme Mass Ratio Inspirals (EMRIs) encodes a detailed map of the black hole geometry, and the detection and characterization of these signals is a major scientific goal for the LISA mission. The waveforms produced are very complex, and the signals need to be coherently tracked for hundreds to thousands of cycles to produce a detection, making EMRI signals one of the most challenging data analysis problems in all of gravitational wave astronomy. Estimates for the number of templates required to perform an exhaustive grid-based matched-filter search for these signals are astronomically large, and far out of reach of current computational resources. Here I describe an alternative approach that employs a hybrid between Genetic Algorithms and Markov Chain Monte Carlo techniques, along with several time saving techniques for computing the likelihood function. This approach has proven effective at the blind extraction of relatively weak EMRI signals from simulated LISA data sets.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.