Optimization Approach for Detecting the Critical Data on a Database (0804.3171v2)
Abstract: Through purposeful introduction of malicious transactions (tracking transactions) into randomly select nodes of a (database) graph, soiled and clean segments are identified. Soiled and clean measures corresponding those segments are then computed. These measures are used to repose the problem of critical database elements detection as an optimization problem over the graph. This method is universally applicable over a large class of graphs (including directed, weighted, disconnected, cyclic) that occur in several contexts of databases. A generalization argument is presented which extends the critical data problem to abstract settings.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.