Papers
Topics
Authors
Recent
2000 character limit reached

Causal models have no complete axiomatic characterization

Published 15 Apr 2008 in cs.AI and cs.LO | (0804.2401v1)

Abstract: Markov networks and Bayesian networks are effective graphic representations of the dependencies embedded in probabilistic models. It is well known that independencies captured by Markov networks (called graph-isomorphs) have a finite axiomatic characterization. This paper, however, shows that independencies captured by Bayesian networks (called causal models) have no axiomatization by using even countably many Horn or disjunctive clauses. This is because a sub-independency model of a causal model may be not causal, while graph-isomorphs are closed under sub-models.

Citations (5)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.