Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 79 tok/s
Gemini 2.5 Pro 30 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 116 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Symplectic Calabi-Yau manifolds, minimal surfaces and the hyperbolic geometry of the conifold (0802.3648v2)

Published 25 Feb 2008 in math.SG and math.DG

Abstract: Given an SO(3)-bundle with connection, the associated two-sphere bundle carries a natural closed 2-form. Asking that this be symplectic gives a curvature inequality first considered by Reznikov. We study this inequality in the case when the base has dimension four, with three main aims. Firstly, we use this approach to construct symplectic six-manifolds with c_1=0 which are never Kahler; e.g., we produce such manifolds with b_1=0=b_3 and also with c_2.omega <0, answering questions posed by Smith-Thomas-Yau. Examples come from Riemannian geometry, via the Levi-Civita connection on Lambda+. The underlying six-manifold is then the twistor space and often the symplectic structure tames the Eells-Salamon twistor almost complex structure. Our second aim is to exploit this to deduce new results about minimal surfaces: if a certain curvature inequality holds, it follows that the space of minimal surfaces (with fixed topological invariants) is compactifiable; the minimal surfaces must also satisfy an adjunction inequality, unifying and generalising results of Chen--Tian. One metric satisfying the curvature inequality is hyperbolic four-space H4. Our final aim is to show that the corresponding symplectic manifold is symplectomorphic to the small resolution of the conifold xw-yz=0 in C4. We explain how this fits into a hyperbolic description of the conifold transition, with isometries of H4 acting symplectomorphically on the resolution and isometries of H3 acting biholomorphically on the smoothing.

Citations (42)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.