Odd sphere bundles, symplectic manifolds, and their intersection theory (1702.03423v1)
Abstract: Recently, Tsai-Tseng-Yau constructed new invariants of symplectic manifolds: a sequence of Aoo-algebras built of differential forms on the symplectic manifold. We show that these symplectic Aoo-algebras have a simple topological interpretation. Namely, when the cohomology class of the symplectic form is integral, these Aoo-algebras are equivalent to the standard de Rham differential graded algebra on certain odd-dimensional sphere bundles over the symplectic manifold. From this equivalence, we deduce for a closed symplectic manifold that Tsai-Tseng-Yau's symplectic Aoo-algebras satisfy the Calabi-Yau property, and importantly, that they can be used to define an intersection theory for coisotropic/isotropic chains. We further demonstrate that these symplectic Aoo-algebras satisfy several functorial properties and lay the groundwork for addressing Weinstein functoriality and invariance in the smooth category.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.