Choice numbers of graphs
Abstract: A solution to a problem of Erd\H{o}s, Rubin and Taylor is obtained by showing that if a graph $G$ is $(a:b)$-choosable, and $c/d > a/b$, then $G$ is not necessarily $(c:d)$-choosable. The simplest case of another problem, stated by the same authors, is settled, proving that every 2-choosable graph is also $(4:2)$-choosable. Applying probabilistic methods, an upper bound for the $k{th}$ choice number of a graph is given. We also prove that a directed graph with maximum outdegree $d$ and no odd directed cycle is $(k(d+1):k)$-choosable for every $k \geq 1$. Other results presented in this article are related to the strong choice number of graphs (a generalization of the strong chromatic number). We conclude with complexity analysis of some decision problems related to graph choosability.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.