Kolmogorov Complexity Theory over the Reals (0802.2027v2)
Abstract: Kolmogorov Complexity constitutes an integral part of computability theory, information theory, and computational complexity theory -- in the discrete setting of bits and Turing machines. Over real numbers, on the other hand, the BSS-machine (aka real-RAM) has been established as a major model of computation. This real realm has turned out to exhibit natural counterparts to many notions and results in classical complexity and recursion theory; although usually with considerably different proofs. The present work investigates similarities and differences between discrete and real Kolmogorov Complexity as introduced by Montana and Pardo (1998).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.