Papers
Topics
Authors
Recent
2000 character limit reached

Algorithmically independent sequences

Published 4 Feb 2008 in cs.IT, cs.SE, math.AG, and math.IT | (0802.0487v1)

Abstract: Two objects are independent if they do not affect each other. Independence is well-understood in classical information theory, but less in algorithmic information theory. Working in the framework of algorithmic information theory, the paper proposes two types of independence for arbitrary infinite binary sequences and studies their properties. Our two proposed notions of independence have some of the intuitive properties that one naturally expects. For example, for every sequence $x$, the set of sequences that are independent (in the weaker of the two senses) with $x$ has measure one. For both notions of independence we investigate to what extent pairs of independent sequences, can be effectively constructed via Turing reductions (from one or more input sequences). In this respect, we prove several impossibility results. For example, it is shown that there is no effective way of producing from an arbitrary sequence with positive constructive Hausdorff dimension two sequences that are independent (even in the weaker type of independence) and have super-logarithmic complexity. Finally, a few conjectures and open questions are discussed.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.