A Neyman-Pearson Approach to Universal Erasure and List Decoding
Abstract: When information is to be transmitted over an unknown, possibly unreliable channel, an erasure option at the decoder is desirable. Using constant-composition random codes, we propose a generalization of Csiszar and Korner's Maximum Mutual Information decoder with erasure option for discrete memoryless channels. The new decoder is parameterized by a weighting function that is designed to optimize the fundamental tradeoff between undetected-error and erasure exponents for a compound class of channels. The class of weighting functions may be further enlarged to optimize a similar tradeoff for list decoders -- in that case, undetected-error probability is replaced with average number of incorrect messages in the list. Explicit solutions are identified. The optimal exponents admit simple expressions in terms of the sphere-packing exponent, at all rates below capacity. For small erasure exponents, these expressions coincide with those derived by Forney (1968) for symmetric channels, using Maximum a Posteriori decoding. Thus for those channels at least, ignorance of the channel law is inconsequential. Conditions for optimality of the Csiszar-Korner rule and of the simpler empirical-mutual-information thresholding rule are identified. The error exponents are evaluated numerically for the binary symmetric channel.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.