Papers
Topics
Authors
Recent
2000 character limit reached

Graph-Based Classification of Self-Dual Additive Codes over Finite Fields

Published 24 Jan 2008 in cs.IT, math.CO, math.IT, and quant-ph | (0801.3773v3)

Abstract: Quantum stabilizer states over GF(m) can be represented as self-dual additive codes over GF(m2). These codes can be represented as weighted graphs, and orbits of graphs under the generalized local complementation operation correspond to equivalence classes of codes. We have previously used this fact to classify self-dual additive codes over GF(4). In this paper we classify self-dual additive codes over GF(9), GF(16), and GF(25). Assuming that the classical MDS conjecture holds, we are able to classify all self-dual additive MDS codes over GF(9) by using an extension technique. We prove that the minimum distance of a self-dual additive code is related to the minimum vertex degree in the associated graph orbit. Circulant graph codes are introduced, and a computer search reveals that this set contains many strong codes. We show that some of these codes have highly regular graph representations.

Citations (20)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.