Complexity of the conditional colorability of graphs
Abstract: For an integer $r>0$, a conditional $(k,r)$-coloring of a graph $G$ is a proper $k$-coloring of the vertices of $G$ such that every vertex $v$ of degree $d(v)$ in $G$ is adjacent to vertices with at least $min{r, d(v)}$ different colors. The smallest integer $k$ for which a graph $G$ has a conditional $(k,r)$-coloring is called the $r$th order conditional chromatic number, denoted by $\chi_r(G)$. It is easy to see that the conditional coloring is a generalization of the traditional vertex coloring for which $r=1$. In this paper, we consider the complexity of the conditional colorings of graphs. The main result is that the conditional $(3,2)$-colorability is $NP$-complete for triangle-free graphs with maximum degree at most 3, which is different from the old result that the traditional 3-colorability is polynomial solvable for graphs with maximum degree at most 3. This also implies that it is $NP$-complete to determine if a graph of maximum degree 3 is $(3,2)$- or $(4,2)$-colorable. Also we have proved that some old complexity results for traditional colorings still hold for the conditional colorings.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.