A Biologically Inspired Classifier
Abstract: We present a method for measuring the distance among records based on the correlations of data stored in the corresponding database entries. The original method (F. Bagnoli, A. Berrones and F. Franci. Physica A 332 (2004) 509-518) was formulated in the context of opinion formation. The opinions expressed over a set of topic originate a ``knowledge network'' among individuals, where two individuals are nearer the more similar their expressed opinions are. Assuming that individuals' opinions are stored in a database, the authors show that it is possible to anticipate an opinion using the correlations in the database. This corresponds to approximating the overlap between the tastes of two individuals with the correlations of their expressed opinions. In this paper we extend this model to nonlinear matching functions, inspired by biological problems such as microarray (probe-sample pairing). We investigate numerically the error between the correlation and the overlap matrix for eight sequences of reference with random probes. Results show that this method is particularly robust for detecting similarities in the presence of translocations.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.