Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 178 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 41 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Finite-Size Scaling from the non-perturbative Renormalization Group (0710.1038v1)

Published 4 Oct 2007 in hep-ph

Abstract: The phase diagram of QCD at finite temperature and density and the existence of a critical point are currently very actively researched topics. Although tremendous progress has been made, in the case of two light quark flavors even the order of the phase transition at zero density is still under discussion. Finite-size scaling is a powerful method for the analysis of phase transitions in lattice QCD simulations. From the scaling behavior, critical exponents can be tested and the order as well as the universality class of a phase transition can be established. This requires knowledge of the critical exponents and the scaling behavior. We use a non-perturbative Renormalization Group method to obtain critical exponents and the finite-size scaling functions for the O(4) universality class in three dimensions. These results are useful for a comparison to the actual scaling behavior in lattice QCD simulations with two flavors, as well as for an estimate of the size of the scaling region and the deviations from the expected scaling behavior.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.