Nonlinear Matroid Optimization and Experimental Design (0707.4618v1)
Abstract: We study the problem of optimizing nonlinear objective functions over matroids presented by oracles or explicitly. Such functions can be interpreted as the balancing of multi-criteria optimization. We provide a combinatorial polynomial time algorithm for arbitrary oracle-presented matroids, that makes repeated use of matroid intersection, and an algebraic algorithm for vectorial matroids. Our work is partly motivated by applications to minimum-aberration model-fitting in experimental design in statistics, which we discuss and demonstrate in detail.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.