Papers
Topics
Authors
Recent
2000 character limit reached

Optimal Non-Linear Models for Sparsity and Sampling (0707.2008v2)

Published 13 Jul 2007 in math.CA

Abstract: Given a set of vectors (the data) in a Hilbert space H, we prove the existence of an optimal collection of subspaces minimizing the sum of the square of the distances between each vector and its closest subspace in the collection. This collection of subspaces gives the best sparse representation for the given data, in a sense defined in the paper, and provides an optimal model for sampling in union of subspaces. The results are proved in a general setting and then applied to the case of low dimensional subspaces of RN and to infinite dimensional shift-invariant spaces in L2(Rd). We also present an iterative search algorithm for finding the solution subspaces. These results are tightly connected to the new emergent theories of compressed sensing and dictionary design, signal models for signals with finite rate of innovation, and the subspace segmentation problem.

Citations (49)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.