Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Towards an exact adaptive algorithm for the determinant of a rational matrix (0706.0014v1)

Published 31 May 2007 in cs.SC

Abstract: In this paper we propose several strategies for the exact computation of the determinant of a rational matrix. First, we use the Chinese Remaindering Theorem and the rational reconstruction to recover the rational determinant from its modular images. Then we show a preconditioning for the determinant which allows us to skip the rational reconstruction process and reconstruct an integer result. We compare those approaches with matrix preconditioning which allow us to treat integer instead of rational matrices. This allows us to introduce integer determinant algorithms to the rational determinant problem. In particular, we discuss the applicability of the adaptive determinant algorithm of [9] and compare it with the integer Chinese Remaindering scheme. We present an analysis of the complexity of the strategies and evaluate their experimental performance on numerous examples. This experience allows us to develop an adaptive strategy which would choose the best solution at the run time, depending on matrix properties. All strategies have been implemented in LinBox linear algebra library.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.