Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 189 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Scalability and Optimisation of a Committee of Agents Using Genetic Algorithm (0705.1757v1)

Published 12 May 2007 in cs.MA

Abstract: A population of committees of agents that learn by using neural networks is implemented to simulate the stock market. Each committee of agents, which is regarded as a player in a game, is optimised by continually adapting the architecture of the agents using genetic algorithms. The committees of agents buy and sell stocks by following this procedure: (1) obtain the current price of stocks; (2) predict the future price of stocks; (3) and for a given price trade until all the players are mutually satisfied. The trading of stocks is conducted by following these rules: (1) if a player expects an increase in price then it tries to buy the stock; (2) else if it expects a drop in the price, it sells the stock; (3)and the order in which a player participates in the game is random. The proposed procedure is implemented to simulate trading of three stocks, namely, the Dow Jones, the Nasdaq and the S&P 500. A linear relationship between the number of players and agents versus the computational time to run the complete simulation is observed. It is also found that no player has a monopolistic advantage.

Citations (16)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.