W1 vanishing on bounded Lipschitz pseudoconvex domains in CP^n
Determine whether the Sobolev cohomology group H^{0,1}_{W^1}(Ω) vanishes for every bounded pseudoconvex domain Ω ⊂ CP^n with Lipschitz boundary.
References
Determine if $$H{0,1}_{W1}(\Omega)=0.$$ But it remains unsolved for general Lipschitz domains.
                — $L^2$-Sobolev Theory for $\bar\partial$ on Domains in $\Bbb {CP}^n$
                
                (2507.19355 - Shaw, 25 Jul 2025) in Problem \ref{prop:Lip W1}, Section 6 (Open problems)