Infinity of the τ-invariant under dual-cone boundary vanishing for Maslov-zero tori
Show that if L ⊂ M is a Maslov 0 Lagrangian torus and the boundary of the dual cone C^*(L,M) satisfies ∂(C^*(L,M)) = {0}, then the τ-invariant associated to L equals infinity; that is, prove τ(L) = ∞.
References
Conjecture. If L⊂ M is a Maslov 0 Lagrangian torus with ∂(C*(L,M))={0}, then τ(L)=∞.
— Boundary Depth and Deformations of Symplectic Cohomology
(2510.17607 - Groman, 20 Oct 2025) in Subsection ‘Collapse in SYZ Mirror Symmetry’ (\ref{subsec:collapse}), Conjecture \ref{ConjTauInfinite}