Tadić’s Conjecture on Critical-Type Unitarity (Conjecture 1.5)
Establish that, for any classical group G over non-Archimedean local fields of characteristic zero, Π_{A,crit}(G) = Π_{u,crit}(G) and Π_iso(G) ⊆ Π_{u,crit}(G), where Π_{A,crit}(G) and Π_{u,crit}(G) are the Arthur-type and unitary subsets of critical-type representations and Π_iso(G) denotes the isolated unitary representations.
Sponsor
References
Conjecture 1.5 ([Tad22, Conjecture 1.1]). For a classical group G over non-Archimedean local
fields F of characteristic zero, we have
(1.2) Π A,crit) = Π u,crit),
and
(1.3) Π iso ⊆ Π u,crit).
— Arthur representations and unitary dual for classical groups
(2410.11806 - Hazeltine et al., 15 Oct 2024) in Conjecture 1.5, Section 1.3