Sufficiency of three-stage Easton collapses and existence of a projection for forcing the triple Chang property
Determine whether the three-stage Easton collapse forcing E(µ, κ) ∗ E(κ, j(κ)) ∗ E(j(κ), j2(κ)) alone forces the triple instance of Chang’s Conjecture (µ+3, µ+2, µ+) → (µ+2, µ+, µ); and ascertain whether there exists a projection from E(µ, j(κ)) ∗ E(j(κ), j2(κ)) to E(µ, κ) ∗ E(κ, j(κ)) ∗ E(j(κ), j2(κ)).
References
We do not know if E(µ,κ) ∗ E(κ,j(κ)) ∗ E(j(κ),j (κ)) ˙ ˙ 2 +3 +2 + +2 + (µ ,µ ,µ ) ։ (µ ,µ ,µ),
or if there is a projection E(µ,j(κ)) ∗ E(j(κ),j (κ)) → E(µ,κ) ∗ E(κ,j(κ)) ∗ E(j(κ),j (κ)).
— Chang's Conjectures and Easton collapses
(2402.09917 - Eskew et al., 15 Feb 2024) in Remark following Proposition 6, Section 4 (Iteration with product)