Monotonicity of the maximized first Laplace eigenvalue across genus
Prove the strict inequality Λ1(M_{γ+1}) > Λ1(M_γ) for closed orientable surfaces, where Λ1(M) denotes the supremum of the area-normalized first Laplace eigenvalue over all Riemannian metrics on M.
Sponsor
References
...to our knowledge the strict inequality g.mono remains open in general.
g.mono:
— Embedded minimal surfaces in $\mathbb{S}^3$ and $\mathbb{B}^3$ via equivariant eigenvalue optimization
(2402.13121 - Karpukhin et al., 20 Feb 2024) in Section 1.5 Existence theory for extremal metrics