Rigorous stability theory for arithmetic barcodes in the ultrametric setting
Develop a rigorous stability theory for arithmetic barcodes associated to valuation persistence modules of network sheaves over discrete valuation rings, including formal definitions of bottleneck distance and interleaving for ultrametric persistence modules and the derivation of corresponding stability bounds.
Sponsor
References
Several mathematical questions remain open. Rigorous stability theory for arithmetic barcodes -- including bottleneck distance bounds and interleaving formulations -- requires careful development of ultrametric persistence module theory.
— Precision-Graded Cohomology and Arithmetic Persistence for Network Sheaves
(2511.00677 - Ghrist et al., 1 Nov 2025) in Section 7 (Conclusion)