Meromorphicity of spectral universal K-matrices
Show that, for every finite-dimensional type-1 Uq(g′)-module V and for generic QSP parameters, the spectral universal K-matrix Kv(z) is the Laurent series expansion of a meromorphic End(V)-valued function of the spectral parameter z.
References
Conjecture 6.4.1. For all V E C (not necessarily irreducible) and for generic QSP parameters, Kv(z) is the Laurent series expansion of a meromorphic matrix-valued function.
                — Boundary transfer matrices arising from quantum symmetric pairs
                
                (2410.21654 - Appel et al., 29 Oct 2024) in Conjecture 6.4.1, Section 6.4