Characterizing solvable evolution algebras via absence of idempotents and triviality of the idempotent system
Prove that for any complex evolution algebra E, the following conditions are equivalent: (i) E is solvable; (ii) E admits no idempotent element; and (iii) the system M_B(E)^t [x_1^2, …, x_n^2]^t = [x_1, …, x_n]^t admits only the trivial solution.
Sponsor
References
\begin{conjecture}\label{conj}
Let $E$ be a complex evolution algebra. Then, the following assertions are equivalent:
\begin{enumerate}[\rm (i)]
\item $E$ is solvable;
\item $E$ admits no idempotents; and
\item the system~sist_3 only admits the trivial solution.
\end{enumerate}
\end{conjecture}
sist_3:
— A note on complete evolution algebras
(2512.12418 - García-Martínez et al., 13 Dec 2025) in Conjecture, Section 3.3 (Idempotents)