Positive product-formula measure for Dunkl–Bessel functions
Establish the existence, for every finite root system R ⊂ ℝ^N and every nonnegative multiplicity function θ ∈ θ(R), of a nonnegative probability measure μ^{R(θ)}_{a_1,a_2} on ℝ^N such that for all a_1,a_2 ∈ ℝ^N and all x ∈ ℂ^N, J^{R(θ)}_{a_1}(x) J^{R(θ)}_{a_2}(x) = ∫_{ℝ^N} J^{R(θ)}_{a}(x) dμ^{R(θ)}_{a_1,a_2}(a).
References
There exists a nonnegative probability measure μ{\mathcal{R}(\theta)}_{a_1,a_2} over \mathbb{R}N such that
J{\mathcal{R}(\theta)}{a_1}(x)J{\mathcal{R}(\theta)}{a_2}(x) = \int_{\mathbb{R}N} J{\mathcal{R}(\theta)}_a(x) d\mu{\mathcal{R}(\theta)}_{a_1,a_2}(a)
for all x\in\mathbb{C}N.
                — Approximating the coefficients of the Bessel functions
                
                (2510.10370 - Yao, 11 Oct 2025) in Conjecture, Section "Weak convergence to the free convolution"