Planchon’s space–time Schrödinger estimate (Conjecture 1.2)
Establish the global space–time bound for the free Schrödinger evolution on R^{n+1}: for all exponents 2 ≤ p,r < ∞ satisfying 1/p + 1/r ≤ 1/2, show that ∥e^{itΔ}f∥_{L_x^p L_t^r(R^{n+1})} ≤ C ∥f∥_{H^s(R^n)} with s = n/2 − n/p − 1/r, for all initial data f ∈ H^s(R^n).
References
Conjecture 1.2. Let 2 ≤ r,p < ∞ and p + r≤ .2Then (1.2) eit∆f LxLt(Rn+1)≤ C f H (R ), s = − − .
— The space-time estimates for the Schrödinger equation
(2402.13539 - Li et al., 21 Feb 2024) in Conjecture 1.2, Section 1 (Introduction)