φ-triviality of extended structures on Taft algebras T_n(ω)
Prove that for the Taft algebra T_n(ω)=k⟨g,x⟩/(g^n−1, x^n, gx−ωxg) with primitive n-th root of unity ω, every extended Frobenius structure (φ,θ) has φ=id and θ lying in the k-linear span of {g^j x | 0≤j≤n−1}.
Sponsor
References
Conjecture \label{conj:Tn-class} Consider the Taft algebra, $T_n(\omega):=\Bbbk\langle g,x \rangle/(gn-1, xn, gx - \omega xg)$ from Example~\ref{example:Taft}. Then, all extensions of $T_n(\omega)$ are $\phi$-trivial, with $\theta\in \Bbbk x \oplus \Bbbk gx \oplus \cdots \oplus \Bbbk g{n-1} x$.
— On extended Frobenius structures
(2410.18232 - Czenky et al., 23 Oct 2024) in Section 2.2 (Classification results)