Bifurcation-theoretic origin of equilibrium FP13
Determine the bifurcation-theoretic origin of the equilibrium FP13 in three-dimensional vertical thermal convection governed by the Oberbeck–Boussinesq equations in a periodic box of size [Lx,Ly,Lz]=[1,8,9] with Prandtl number Pr=0.71, including identifying the parent branch or mechanism (e.g., pitchfork, Hopf, or global bifurcation) by which FP13 is created.
References
FP13 is shown in figure \ref{part3_BD-newFP}(k) and exists beyond $Ra=6800$, where we stopped the continuation; its bifurcation-theoretic origin remains unclear.
— Natural convection in a vertical channel. Part 3. Bifurcations of many (additional) unstable equilibria and periodic orbits
(2504.05524 - Zheng et al., 7 Apr 2025) in Section 3.3 (FP13)