Representation minimizing the expected attraction time
Identify, for a given irreducible and positive recurrent Markov chain on a countable state space, the random dynamical system representation that minimizes the expected time to hit the random attractor when the initial state is distributed according to the stationary distribution π; equivalently, minimize ∑_{x∈X} π(x) E[T_A(ω, x)] over all representations.
Sponsor
References
An interesting open question is which RDS representation minimizes this quantity, i.e.~for which RDS representation of a given Markov chain a randomly distributed initial conditions hits the attractor within the shortest time span.
— Random attractors on countable state spaces
(2405.19898 - Chemnitz et al., 30 May 2024) in Section 6, Discussion