Lower bounds for constrained moment-matching in the interpolation regime
Establish the conjectured lower bounds for the constrained moment-matching problem M_p(ε,L) that underlie interpolation-regime lower bounds for tolerant testing under non-smooth ℓp norms. Specifically, prove that for 0<ε≲1/L, one has M_p(ε,L)^{1/p} ≳ ε^{p/2} L^{1−p/2} when 1≤p<2, and M_p(ε,L)^{1/p} ≳ ε^{2k/p} L^{1−2k/p} when 2k<p<2(k+1) with k∈Z+. Here M_p(ε,L) denotes the supremum of E_{π1}|v|^p over distributions π0,π1 on [−1,1] that match the first L moments and satisfy E_{π0}|v|^p ≤ ε^p.
Sponsor
References
We conjecture that the constrained moment-matching problem satisfies the following lower bound whenever $\epsilon$ is not too large.
Conjecture For $0<\epsilon \lesssim 1/L$, it holds that: $$ M_p{1/p}(\epsilon,L) \gtrsim \begin{dcases} \frac{\epsilon{p/2}}{L{1-p/2}} &\text{if } 1 \leq p < 2\ \frac{\epsilon{2k/p}}{L{1-2k/p}} &\text{if } 2k < p < 2(k+1) \text{ with } k \in \mathbb{Z}_+ \end{dcases} $$