Hard Lefschetz for the Gorenstein ring A(M)
Determine whether, for every matroid M of rank d, the Gorenstein ring A(M) associated to the basis generating polynomial of M satisfies the Hard Lefschetz property in all degrees k ≤ d/2 for some choice of a ∈ ℝ^E_{>0}.
References
Conjecture~\ref{conj:mny} Let $M = (E, \mcI)$ be a matroid of rank $d$. The ring $\A(M)$ satisfies $\HL_k$ for some $a \in \RRE_{> 0}$ for all $k \leq \frac{d}{2}$.
— Log-concavity in Combinatorics
(2404.10284 - Yan, 16 Apr 2024) in Section 6 (The Gorenstein Ring associated to the Basis Generating Polynomial of a Matroid)