Pattern for H2 of SL2 over truncated polynomial rings over F2
Determine whether, for all integers n ≥ 2, the Schur multiplier H_2(SL_2(F_2[X]/(X^n)), Z) is isomorphic to (Z/2)^n, extending the observed pattern for n=2,…,5.
References
Our GAP computations indicate that for 2 \leq n \leq 5, H_2\bigl(\mathrm{SL}_2(\mathbb{F}_2[X]/(Xn)), \mathbb{Z}\bigr) \simeq (\mathbb{Z}/2)n. We wonder whether this pattern persists for all n \geq 2.
— Schur multiplier of $\mathrm{SL}_2$ over finite commutative rings
(2510.03946 - Mirzaii et al., 4 Oct 2025) in Remark (iii), Section 5