Fredholm determinant formula for frozen-corner ASM enumeration
Establish that, for all integers n ≥ 1 and 1 ≤ s ≤ n, the frozen-corner enumeration B_{n,s}—the number of n×n alternating sign matrices (ASMs) with an s×s square of zero entries in a corner—satisfies B_{n,s} = A_n det_{1≤i,j≤s}(I − M), where A_m denotes the total number of m×m ASMs and M is the s×s matrix with entries M_{ij} = (A_{n−s+j} / A_{n−s+j−1}) · (1/(2πi)^2) ∮_{C_0} ∮_{C_0} [f_i^+(z) f_j^−(w) / (1 − z − w)] dz dw for i,j = 1,…,s, with C_0 a small closed contour around the origin, g_N(z) = 2F1(−N+1, N; 2N; 1 − z), and f_i^{±}(z) = [1 ± (−1)^i z] · (1 − z)^{i−1} · z^i · g_{n−s+i}(z).
Sponsor
References
We propose the following formula for the frozen-corner enumeration. Conjecture \ref{main_conj} The number B_{n,s} may be evaluated in terms of a Fredholm type determinant: B_{n,s}=A_n \det_{1\leq i,j\leq s}(1-M) where the s×s matrix M is defined in eq:matrix_new, or equivalently, in terms of Eqs. eq:gnz, eq:fpm, and eq:matrix.
eq:gnz:
$g_n(z):=\Fhyper{-n+1\ n}{2n}{1-z}. $
eq:fpm:
eq:matrix:
$M_{ij}:= \frac{A_{n-s+j}}{A_{n-s+j-1}}\oint_{C_0}\oint_{C_0}\frac{f_i^+(z)f_j^-(w)}{1-z-w} \frac{d zd w}{(2\pii)^2} ,\qquad i,j=1,\dots, s, $