Finiteness of the graph p-Laplacian spectrum
Determine whether the spectrum of the graph p-Laplacian is always finite on general finite graphs. If it is finite, derive explicit upper bounds for the number of eigenvalues in terms of graph size and p.
Sponsor
References
The finiteness of the $p$-Laplacian spectrum on general graphs, as well as the existence of upper bounds for the cardinality of the spectrum, remains a significant open problem.
— Nonlinear spectral graph theory
(2504.03566 - Deidda et al., 4 Apr 2025) in Subsection 3.1, “p-Laplacian Spectrum count: criticisms and open problems”